Oftentimes when we deal with calculations and chemistry, we're gonna run into the situation where we're dealing with extremely large numbers and extremely small numbers, not convenient way to deal with. This is scientific notation. Now scientific notation is used to turn these small or large inconvenient numbers into manageable ones. So here we have an example of something written in scientific notation. We say it's 6.88 times 10 to the negative power. Now what's in red is called our coefficient. Now the coefficient is just the beginning, part of the value that is equal to or greater than one, but less than 10. Next, we have our base, which is here. This is the portion of the scientific notation value that is always 10. So that number is always gonna be 10 if we're writing something in scientific notation. And then finally the exponents, which we sometimes called the power. This is the number of places the decimal must was moved to create the scientific notation value. Now we'll talk about in a couple of videos. What happens when it's positive versus negative? What effect does that have on my value overall Now, another important thing when it comes to this exponents is that it must be expressed as a whole number. Integer So negative. 12 Positive three. Negative to can't be decimals or fractions. Must be whole numbers. Now that we know the basically out of scientific notation, click on the next video and let's take a look at the example question.